filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
ZPRIMES → SIEVE(nats(s(s(0))))
ZPRIMES → NATS(s(s(0)))
ACTIVATE(n__sieve(X)) → SIEVE(X)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
ACTIVATE(n__nats(X)) → NATS(X)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
ZPRIMES → SIEVE(nats(s(s(0))))
ZPRIMES → NATS(s(s(0)))
ACTIVATE(n__sieve(X)) → SIEVE(X)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
ACTIVATE(n__nats(X)) → NATS(X)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
ACTIVATE(n__sieve(X)) → SIEVE(X)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__sieve(X)) → SIEVE(X)
Used ordering: Polynomial interpretation [25]:
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(FILTER(x1, x2, x3)) = x1
POL(SIEVE(x1)) = x1
POL(activate(x1)) = x1
POL(cons(x1, x2)) = x2
POL(filter(x1, x2, x3)) = x1
POL(n__filter(x1, x2, x3)) = x1
POL(n__nats(x1)) = 0
POL(n__sieve(x1)) = 1 + x1
POL(nats(x1)) = 0
POL(s(x1)) = 0
POL(sieve(x1)) = 1 + x1
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
nats(N) → cons(N, n__nats(s(N)))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
activate(X) → X
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
From the DPs we obtained the following set of size-change graphs: